
Prepared by Azure Databases SQL Engineering Team

nco

Prepared by

Azure Databases SQL Engineering Team (datasqlninja@microsoft.com)

Oracle to Azure Database for
PostgreSQL Migration
Cookbook

Prepared by Data SQL Ninja Engineering Team

Disclaimer

The High-Level Architecture, Migration Dispositions and guidelines in this document is developed in
consultation and collaboration with Microsoft Corporation technical architects. Because Microsoft must
respond to changing market conditions, this document should not be interpreted as an invitation to
contract or a commitment on the part of Microsoft.

Microsoft has provided generic high-level guidance in this document with the understanding that
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE
INFORMATION CONTAINED HEREIN.

This document is provided “as-is”. Information and views expressed in this document, including URL and
other Internet Web site references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal reference purposes.

© 2019 Microsoft. All rights reserved.

Note: The detail provided in this document has been harvested as part of customers engagement
sponsored through the Azure Databases SQL Engineering

Prepared by Azure Databases SQL Engineering

Table of Contents

Introduction .. 2

1 High Level Migration Approach .. 2

2 Typical ora2pg Migration Architecture ... 3

3 Steps to Migrate from Oracle to Azure Database for PostgreSQL 4

3.1 Pre-Migration: Discovery .. 4

3.2 Pre-Migration: Assessment .. 4

3.3 Pre-Migration: Convert .. 6

3.4 Migration: Schema ... 7

3.5 Migration: Data Copy ... 8

3.6 Migration: Cutover... 8

3.7 Post-Migration: Perform Tests .. 9

4 Migration Recommendations ... 10

5 ORA2PG Commands Cheat Sheet .. 11

6 References ... 14

Prepared by Azure Databases SQL Engineering

Introduction

This document purpose is to provide Architects, Consultants, DBAs and related roles with a guide for quick
migrating workloads from Oracle to Azure Database for PostgreSQL using ora2pg tool.

1 High Level Migration Approach

Replacing an Oracle database backend with an Azure Database for PostgreSQL backend is a simple exercise
that can be executed using the following steps:

Discover: Customers discover all the databases they own, instances hosting them, source database type
and version, other database metadata, etc.

Assess: In this phase, the goal is to identify which Azure database target a customer can migrate their
database to and how much work is involved.

1. Target and SKU recommendation – Identifies which Azure database target and SKU is right
for a database.

2. Readiness assessment – Compares the features used on the source vs the target and give
an overview of work involved in migrating a database to Azure.

3. Performance assessment – Compares the query correctness and performance of a database
on premise and in Azure.

Convert: Convert the schema from the source database type to target database type. This phase is valid
only for heterogenous migrations.

Migrate: Migrating a database involves migrating schema, data and objects usually in that order. There are
2 types of database migration methods:

1. Offline migrations – In this method, customers plan a downtime for the database, mark it
read-only, perform the migration and switch over their applications to the new database.

Prepared by Azure Databases SQL Engineering

2. Online migrations – Also known as minimal downtime, this method requires a short or no
downtime for migrations. This method involves doing a front load of data to the target,
enabling data sync so that data continues to be replicated from source to target until
customer is ready to cut-over.

Validate: After the migration is complete, it is important to ensure that target database has the same
schema, data and objects as source database. Also, it is important to validate if applications using the
database behaves the same way on both source and target databases.

2 Typical ora2pg Migration Architecture

After provisioning the VM and Azure Database for PostgreSQL, two configurations are needed for enabling
connectivity between them: “Allow Azure Services” and “Enforce SSL Connection”, depicted as follow:

“Connection Security” blade -> Allow access to Azure Services -> ON
“Connection Security” blade -> SSL Settings -> Enforce SSL Connection -> DISABLED

Prepared by Azure Databases SQL Engineering

3 Steps to Migrate from Oracle to Azure Database for

PostgreSQL

3.1 Pre-Migration: Discovery

Microsoft Oracle pre-assessment scripts run against the Oracle database. The Pre-assessment script are a
set of queries that hits the Oracle metadata and provides the following:

- Inventory of the database counts of objects by schema, type and status
- Gives a rough estimate of Raw Data in each schema – this is based on statistics
- Provides sizing of tables in each schema
- Provides how many lines of code per Package, Function, Procedure, etc.

Download the related scripts from the ora2pg website or alternatively, if you are using ora2pg v20, you
can download a sample configuration file from our GitHub Repo. This cookbook is prepared targeting
ora2pg v20.

3.2 Pre-Migration: Assessment

After understanding the inventory of the Oracle database and having an idea of the database size and what
the challenges are, the next step is to run the Assessment.

Estimating the cost of a migration process from Oracle to PostgreSQL is not easy. To obtain a good
assessment of this migration cost, Ora2Pg will inspect all database objects, all functions and stored
procedures to detect if there's still some objects and PL/SQL code that cannot be automatically converted
by Ora2Pg.

Ora2Pg has a content analysis mode that inspect the Oracle database to generate a text report on what the
Oracle database contains and what cannot be exported.

To activate the "analysis and report" mode, use the export de type SHOW_REPORT like in the following
command:

ora2pg -t SHOW_REPORT

Once the database can be analyzed, Ora2Pg, by his ability to convert SQL and PL/SQL code from Oracle
syntax to PostgreSQL, can go further by estimating the code difficulties and estimate the time necessary to
operate a full database migration.

To estimate the migration cost in man-days, Ora2Pg allow you to use a configuration directive called
ESTIMATE_COST that you can also enabled at command line:

ora2pg -t SHOW_REPORT --estimate_cost

Prepared by Azure Databases SQL Engineering

The default migration unit represent around five minutes for a PostgreSQL expert. If this is your first
migration you can get it higher with the configuration directive COST_UNIT_VALUE or the --cost_unit_value
command line option:

The last line of the report shows the total estimated migration code in man-days following the number of
migration units estimated for each object. This migration unit represent around five minutes for a
PostgreSQL expert. If this is your first migration you can get it higher with the configuration directive
COST_UNIT_VALUE or the --cost_unit_value command line option. Find below some variations of
assessment a) tables assessment; b) columns assessment c) schema assessment using default cost_unit (5
min) d) schema assessment using 10 min as cost unit. Run the following command to generate the report
and estimates. Update the path to your configuration file path as needed.

ora2pg -c /etc/ora2pg/ora2pg.conf

The output of the schema assessment is illustrated as below:

Migration level: B-5

 Migration levels:
 A - Migration that might be run automatically

 B - Migration with code rewrite and a human-days cost up to 5 days

 C - Migration with code rewrite and a human-days cost above 5 days

 Technical levels:

 1 = trivial: no stored functions and no triggers

 2 = easy: no stored functions but with triggers, no manual rewriting

 3 = simple: stored functions and/or triggers, no manual rewriting

 4 = manual: no stored functions but with triggers or views with code rewriting

 5 = difficult: stored functions and/or triggers with code rewriting

The assessment consists in a letter A or B to specify whether the migration needs manual rewriting or not,
and a number from 1 to 5 to indicate the technical difficulty level. You have an additional option --
human_days_limit to specify the number of human-days limit where the migration level should be set to C
to indicate that it need a huge amount of work and a full project management with migration support.
Default is 10 human-days. You can use the configuration directive HUMAN_DAYS_LIMIT to change this
default value permanently.

This feature has been developed to help deciding which database could be migrated first and what is the
team that need be mobilized.

Prepared by Azure Databases SQL Engineering

3.3 Pre-Migration: Convert

In this step of the migration, the conversion or translation of the Oracle Code + DDLS to PostgreSQL
occurs. The ora2pg tool exports the Oracle objects in a PostgreSQL format automatically. For those
objects generated, some won’t compile in the PostgreSQL database without manual changes.

The process of understanding which elements need manual intervention consists in compiling the files
generated by ora2pg against the PostgreSQL database, checking the log and making the necessary changes
until all the schema structure is compatible with PostgreSQL syntax.

During the compilation of files, check the logs and correct the necessary syntaxes that ora2pg was unable
to convert out of the box.

Refer to this guide for support on working around issues (Link)

3.3.1 ORA2PG configuration v20

ORA2PG can run from a configuration file or a command line. The command line input is optional. Keep in
mind, that If you specify any configuration variable when using command line, it will take precedence over
variables in configuration file.

You can either edit the default configuration file /etc/ora2pg/ora2pg.conf (the one you have created during
the installation phase) or you can create your own file (Refer to section 3.1). The default
file /etc/ora2pg/ora2pg.conf will be used by ora2pg unless you specify a different one. When updating the
configuration file, please keep in mind Oracle have many modules installed which may not be useful, so to
make sure that these unwanted modules are not extracted from your oracle instance, please find this section
in the configuration file and update as required.

Allow to add a comma separated list of system user to exclude from

Oracle extraction. Oracle have many of them following the modules

installed. By default, it will suppress all object owned by the following

system users:

CTXSYS, DBSNMP, EXFSYS, LBACSYS, MDSYS, MGMT_VIEW, OLAPSYS, ORDDATA, OWBSYS,

ORDPLUGINS, ORDSYS, OUTLN, SI_INFORMTN_SCHEMA, SYS, SYSMAN, SYSTEM, WK_TEST,

WKSYS, WKPROXY, WMSYS, XDB, APEX_PUBLIC_USER, DIP, FLOWS_020100,FLOWS_030000,

FLOWS_040100, FLOWS_010600, FLOWS_FILES, MDDATA, ORACLE_OCM, SPATIAL_CSW_ADMIN_USR,

SPATIAL_WFS_ADMIN_USR, XS$NULL, PERFSTAT, SQLTXPLAIN, DMSYS, TSMSYS, WKSYS,

APEX_040200, DVSYS, OJVMSYS, GSMADMIN_INTERNAL, APPQOSSYS

Other list of users set to this directive will be added to this list.

#SYSUSERS OE, HR

Prepared by Azure Databases SQL Engineering

1. Find the following four Oracle related parameters and change them accordingly:

ORACLE_HOME /u01/app/oracle/product/12.1/dbhome_1

ORACLE_DSN dbi:Oracle:host=localhost;sid=xe;port=1521

ORACLE_USER system

ORACLE_PWD oracle

2. Find the following parameters and set them as described:

TYPE TABLE PACKAGE COPY VIEW GRANT SEQUENCE TRIGGER FUNCTION PROCEDURE TABLESPACE TYPE PARTITI
ON

DISABLE_SEQUENCE 1

DISABLE_TRIGGERS USER

TRUNCATE_TABLE 1

DROP_FKEY 1

3. Set parameter OUTPUT to the desired value.
4. Set parameter SCHEMA to the source DB schema(s)
5. Set parameter PG_SCHEMA to the target schema name
6. Connect back to non-root OS user

3.4 Migration: Schema

After the fixes are in place, a stable build of the database is ready for deployment.

At this point, all that is required is to execute the psql import commands, pointing to the files containing
the modified code in order to compile the database objects against the PostgreSQL database and import
the data.

In this step, some level of parallelism on importing the data can be implemented. Use the following
command to import DDL to PostgreSQL.

psql "dbname=dbhere host=hosthere user=userhere password=pwhere port=5432 sslmode=require tabl
es_output.sql”

* sslmode=require is mandatory (encryption)

Prepared by Azure Databases SQL Engineering

3.5 Migration: Data Copy

As of March 2023, to perform a near real time data copy/zero downtime data copy, a streaming/CDC
solution such as Striim, HVR or Debezium, Azure SQL Databases engineering team custom Spark IP (reach
out to datasqlninja@microsoft.com) should be considered.

You can also use ora2pg to migrate your data from source Oracle to destination PostgreSQL using following
command

1) Copy the data
To copy data from specific tables, use:

ora2pg -d -t COPY -a table1, table2,...,tableN

To copy all the tables from the database, use:

ora2pg -d COPY -j 8 -J 8 [-c /etc/ora2pg/ora2pg.conf]

* j 8 specifies the number of parallel copies to Destination PostgreSQL

* J 8 specifies the number of parallel copies from Source Oracle

* [-c /etc/ora2pg/ora2pg.conf] is optional

3.6 Migration: Cutover

With online (minimal downtime) migrations, the source you are migrating continues to change, drifting
from the target in terms of data and schema, after the one-time migration occurs. During the Data cutover
phase, you need to ensure that all changes in the source are captured and applied to the target in near real
time. After you verify that all changes in source have been applied to the target, you can cutover from the
source to the target environment.

As of March 2023, to perform a near real time data copy/zero downtime data copy, a streaming/CDC
solution such as Striim, HVR or Debezium, Azure SQL Databases engineering team custom Spark IP (reach
out to datasqlninja@microsoft.com) should be considered.

For “delta/incremental” migration using ora2pg, the technique consists in applying for each table a query
that applies a filter (cut) by date or time, etc., and after that finalizing the migration applying a second query
which will migrate the rest of the data (leftover). Refer to section 3.5.

In the source data table, migrate all the historical data first. An example of that is:

select * from table1 where filter_data < 01/01/2019

You can query the changes made since the initial migration by running a command similar to the following:

Prepared by Azure Databases SQL Engineering

select * from table1 where filter_data >= 01/01/2019

In this case it is recommended that the validation is enhanced by checking data parity on both sides, source
and target.

For online migrations, with Azure Data Migration Services you can migrate your oracle databases hosted
on-premises or on a virtual machine to Azure Database for PostgreSQL. It enables resilient migrations of
Oracle databases at scale and with high reliability. Provision an instance of Database Migration Service from
the Azure portal or via Azure PowerShell and create a migration project to perform the migration.

3.7 Post-Migration: Perform Tests

To guarantee source and target are properly migrated the manual data validation scripts are run against
the Oracle source and PostgreSQL target databases.

Ideally, if source and target databases have a networking path, ora2pg can should be used for data
validation. Using the type of action called TEST allows to check that all objects from Oracle database have
been created under PostgreSQL. The command run as following:

ora2pg -t TEST -c config/ora2pg.conf > migration_diff.txt

Prepared by Azure Databases SQL Engineering

4 Migration Recommendations

- To improve the performance of the assessment or export operations in the Oracle server, collect
statistics as following:

BEGIN

 DBMS_STATS.GATHER_SCHEMA_STATS

 DBMS_STATS.GATHER_DATABASE_STATS

 DBMS_STATS.GATHER_DICTIONARY_STATS

 END;

- Export data using COPY command instead of INSERT
- Avoid exporting tables with their FKs, constraints and indexes – it will make the data import into

PostgreSQL slower
- Create materialized views using the “no data clause” and refresh it later
- If possible, implement unique indexes in materialized views, this will make the refresh faster with

the syntax “REFRESH MATERIALIZED VIEW CONCURRENTLY”

Prepared by Azure Databases SQL Engineering

5 ORA2PG Commands Cheat Sheet

5.1 Ora2PG Tips & Triggers

Useful option in ORA2PG

Command line important triggers:

-i: name of Oracle code file to convert, no need to connect to the Oracle.
-b: Output directory.
-c: The conf file.
-o: Output file.
-j: Number of parallel process sent to PG DB.
-J: Number of Parallel connections to Oracle DB.
-p: Enable PL-SQL TO P-SQL code conversion.
-P: Number of parallel tables to extract.
-d: debug mode Verbs mode.
-l: create a Log file.
-n: Set the Oracle Schema
-N: Set the PostgreSQL Schema
-t: type of object to export

5.2 Sample conf file configuration option

The # will remark a line, to use the parameter delete the # and the beginning of the line.

ORACLE_DSN dbi:Oracle:host=localhost;sid=ORCL;port=1521 – Oracle connection

ORACLE_USER <orauser>

ORACLE_PWD <orapwd>

PG_DSN dbi:Pg:dbname=MyDB;host=srv.com;port=5432 -- PG connection

PG_USER <your user>

PG_PWD <your password>
--

PG_SCHEMA Set the PG schema in the script.

ALLOW The name of object to export.

#EXCLUDE The name of object to exclude from the export.

Prepared by Azure Databases SQL Engineering

SKIP Skipping fkeys pkeys ukeys indexes checks during data migration.

FILE_PER_TABLE …. Will create on file per object.

WHERE 1=1 All table with this condition
 Tab1_tst [ID1='001'] All tst table with ID condition.
 MOD (col1, Col2)=0

5.3 ORA2PG sample commands

Show Ora2PG Version =>
Ora2pg --version

Show Oracle Version =>
ora2pg -c C:\Ora2PG_BrownBag\ora2pg_BB.conf -t SHOW_VERSION

List Schema =>
ora2pg -c C:\Ora2PG_BrownBag\ora2pg_BB.conf -t SHOW_SCHEMA

List Table and row count =>
ora2pg -c C:\Ora2PG_BrownBag\ora2pg_BB.conf -t SHOW_TABLE -n HR

Cost report HTML File=>
ora2pg -c C:\Ora2PG_BrownBag\ora2pg_BB.conf -t SHOW_REPORT --estimate_cost --
dump_as_html -n HR > C:\Ora2PG_BrownBag\report.html

Create a .sql file with all the tables in HR schema =>
ora2pg -t TABLE -o Table1.sql -c C:\Ora2PG_BrownBag\ora2pg_BB.conf

Create a .sql file with all the procedure in HR schema, regular and with estimate =>
ora2pg -t PROCEDURE -o procedure.sql -c C:\Ora2PG_BrownBag\ora2pg_BB.conf

In case where you get an out of memory error when creating the estimate report, you can
generate an estimation per object in the .SQL file with the following demo
ora2pg -t PROCEDURE -o procedure_est.sql --estimate_cost -c
C:\Ora2PG_BrownBag\ora2pg_BB.conf

Create a .sql file with all the Views in HR schema =>
ora2pg -t VIEW -o View.sql -c C:\Ora2PG_BrownBag\ora2pg_BB.conf

Create a Data file of all tables =>
ora2pg -t COPY -o data.sql -b C:\Ora2PG_BrownBag -c
C:\Ora2PG_BrownBag\ora2pg_BBF.conf

Direct copy to PG =>
ora2pg -t COPY -c C:\Ora2PG_BrownBag\ora2pg_BB.conf

Prepared by Azure Databases SQL Engineering

5.4 PSQL Query tool sample commands

Connecting to PostgreSQL with Psql command line and execute .sql file

Connect to DB =>
psql -h Server.com -p 5432 -U user1 -d DB_Name
Connect and execute the create table file =>
psql -h Server.com -p 5432 -U user1 -d DB_Name -f c:\MigFold\Table.sql
Connect and execute the data insert of tables =>
psql -h Server.com -p 5432 -U user1 -d DB_Name -f c:\Ora2PG_BrownBag\data.sql

\l List all databases.
\du List all User & Roles.
\i file.sql executing the .sql file
\c dbname connect to the DB
\d List all object in a DB
\df TabName List Table Columns
\st function will show the function code

\q quit PSQL

Prepared by Azure Databases SQL Engineering

6 References

Oracle Azure Database for PostgreSQL

Ora2PG Tool download Link http://ora2pg.darold.net/

Ora2PG documentation link http://ora2pg.darold.net/documentation.html

Ora2PG Git link https://github.com/darold/ora2pg

Microsoft PostgreSQL Documentation https://docs.microsoft.com/en-
gb/azure/postgresql/

Microsoft Data Migration Guide https://datamigration.microsoft.com/

PostgreSQL documentation https://www.postgresql.org/

Feedback and suggestions
If you have feedback or suggestions for improving this data migration asset, please contact the Azure SQL
Databases Engineering Team (datasqlninja@microsoft.com). Thanks for your support!

Note: For additional information about migrating various source databases to Azure, see the Azure
Database Migration Guide.

